1023: [SHOI2008]cactus仙人掌图 Time Limit: 1 Sec Memory Limit: 162 MB Submit: 2564 Solved: 1062 Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌 图(cactus)。所谓简单回路就是指在图上不重复经过任何一个顶点的回路。 举例来说,上面的第一个例子是一张仙人图,而第二个不是——注意到它有三条简单回路:(4,3,2,1,6 ,5,4)、(7,8,9,10,2,3,7)以及(4,3,7,8,9,10,2,1,6,5,4),而(2,3)同时出现在前两 个的简单回路里。另外,第三张图也不是仙人图,因为它并不是连通图。显然,仙人图上的每条边,或者是这张仙 人图的桥(bridge),或者在且仅在一个简单回路里,两者必居其一。定义在图上两点之间的距离为这两点之间最 短路径的距离。定义一个图的直径为这张图相距最远的两个点的距离。现在我们假定仙人图的每条边的权值都是1 ,你的任务是求出给定的仙人图的直径。 Input 输入的第一行包括两个整数n和m(1≤n≤50000以及0≤m≤10000)。其中n代表顶点个数,我们约定图中的顶 点将从1到n编号。接下来一共有m行。代表m条路径。每行的开始有一个整数k(2≤k≤1000),代表在这条路径上 的顶点个数。接下来是k个1到n之间的整数,分别对应了一个顶点,相邻的顶点表示存在一条连接这两个顶点的边 。一条路径上可能通过一个顶点好几次,比如对于第一个样例,第一条路径从3经过8,又从8返回到了3,但是我们 保证所有的边都会出现在某条路径上,而且不会重复出现在两条路径上,或者在一条路径上出现两次。 Output 只需输出一个数,这个数表示仙人图的直径长度。 Sample Input 15 3 9 1 2 3 4 5 6 7 8 3 7 2 9 10 11 12 13 10 5 2 14 9 15 10 8 10 1 10 1 2 3 4 5 6 7 8 9 10 Sample Output 8 9 HINT 对第一个样例的说明:如图,6号点和12号点的最短路径长度为8,所以这张图的直径为8。 【注意】使用Pascal语言的选手请注意:你的程序在处理大数据的时候可能会出现栈溢出。 如果需要调整栈空间的大小,可以在程序的开头填加一句:{$M 5000000},其中5000000即 指代栈空间的大小,请根据自己的程序选择适当的数值。
#include<iostream> #include<cstring> #include<cstdio> #include<algorithm> using namespace std; #define N 2222222 int head[N],to[N],next[N]; int n,m,tot,cnt,ans; int dis[N],cir[N]; int dfn[N],low[N],visx,fa[N]; inline void Add_Edge(int u,int v){to[cnt]=v;next[cnt]=head[u];head[u]=cnt++;} struct Data{ int p,w; }q[N]; inline void read(){ memset(head,-1,sizeof head ); scanf("%d%d",&n,&m); for(int i=1,a,b,c;i<=m;i++){ scanf("%d%d",&a,&b); for(int j=2;j<=a;j++){ scanf("%d",&c); Add_Edge(b,c);Add_Edge(c,b);b=c; } } } inline void GetCircle(){ int h=1,t=1; for(int i=1;i<=tot;i++) cir[tot+i]=cir[i];//展链成环 for(int i=1;i<=(tot<<1);i++){ while(h<t&&i-q[h].p>(tot>>1)) h++; while(h<t&&q[t].w<=dis[cir[i]]-i) t--; q[++t].p=i; q[t].w=dis[cir[i]]-i; ans=max(ans,dis[cir[i]]+i+q[h].w); } } inline void DFS(int u){ low[u]=dfn[u]; for(int i=head[u];~i;i=next[i]){ int v=to[i]; if(fa[v]!=0&&v!=fa[u]) low[u]=min(low[u],dfn[v]); if(fa[v]==0){ fa[v]=u; dfn[v]=dfn[u]+1; DFS(v); low[u]=min(low[u],low[v]); } } for(int i=head[u];~i;i=next[i]){ int v=to[i]; if(fa[v]==u&&low[v]>dfn[u]){//Bridge ans=max(ans,dis[v]+1+dis[u]); dis[u]=max(dis[u],dis[v]+1); } if(fa[v]!=u&&dfn[u]<dfn[v]){//Circle tot=0; while(v!=fa[u]) cir[++tot]=v,v=fa[v];//cir暂时存储环上的点 GetCircle();//接着处理环上的点 for(int j=1;j<tot;j++) dis[u]=max(dis[u],dis[cir[j]]+min(j,tot-j)); } } } inline void GO(){ fa[1]=-1; DFS(1); cout<<ans<<endl; } int main(){ read(); GO(); return 0; }