传送门
给定N,M求gcd(i,N)>=M的i的个数
我们可以分解N=a*b, i=a*d(b>=d 且b,d互质),那么我们要求的就是a》=m的时候d的个数(b随a而确定)
由于b>=d且b,d互质,所以这个数目就是φ(b)-1
但是,如果对于每个a枚举b,铁定超时。(仍然O((N-M)*sqrt(N))的复杂度)
但是如果单纯这样全部枚举的话依旧会超时,所以我们要想一个办法去优化它。
我们可以折半枚举,这里的折半并不是二分的意思。
我们先看,我们枚举时,当i<sqrt(n),假设a=n / i, 当i>sqrt(n)之后 有b=n/i,我们观察到当n%i==0时,会出现一种情况,就是a*b==n。所以我们就可以只需要枚举sqrt(n)种情况,然后和它对应的情况就是 n/i。
我们这种枚举时间会快非常多
#include <cmath> #include <cstdio> #include <cstdlib> #include <cstring> #include <iostream> #include <map> #include <algorithm> using namespace std; #define pi acos(-1) #define endl '\n' #define srand() srand(time(0)); #define me(x,y) memset(x,y,sizeof(x)); #define foreach(it,a) for(__typeof((a).begin()) it=(a).begin();it!=(a).end();it++) #define close() ios::sync_with_stdio(0); cin.tie(0); #define FOR(x,n,i) for(int i=x;i<=n;i++) #define FOr(x,n,i) for(int i=x;i<n;i++) #define W while #define sgn(x) ((x) < 0 ? -1 : (x) > 0) #define bug printf("***********\n"); typedef long long LL; const int INF=0x3f3f3f3f; const LL LINF=0x3f3f3f3f3f3f3f3fLL; const int dx[]={-1,0,1,0,1,-1,-1,1}; const int dy[]={0,1,0,-1,-1,1,-1,1}; const int maxn=1000; const int maxx=1e7+100; const double EPS=1e-7; const int mod=998244353; template<class T>inline T min(T a,T b,T c) { return min(min(a,b),c);} template<class T>inline T max(T a,T b,T c) { return max(max(a,b),c);} template<class T>inline T min(T a,T b,T c,T d) { return min(min(a,b),min(c,d));} template<class T>inline T max(T a,T b,T c,T d) { return max(max(a,b),max(c,d));} inline LL Scan() { LL Res=0,ch,Flag=0; if((ch=getchar())=='-')Flag=1; else if(ch>='0' && ch<='9')Res=ch-'0'; while((ch=getchar())>='0'&&ch<='9')Res=Res*10+ch-'0'; return Flag ? -Res : Res; } //freopen( "in.txt" , "r" , stdin ); //freopen( "data.out" , "w" , stdout ); //cerr << "run time is " << clock() << endl; int solve(int n) { int ans=n; if(n%2==0)//只搜n/2次,不然可能超一组 (也可能不超) { while(n%2==0) n/=2; ans=ans/2; } for(long long i=3;i*i<=n;i+=2) //每找到一个就更改上界,这个优化很多,所以直接copy刘汝佳的代码会超时 { if(n%i==0) { while(n%i==0) n/=i; ans=ans/i*(i-1); } } if(n>1) ans=ans/n*(n-1); return ans; } int main() { int t; t=Scan(); while(t--) { int n,m; n=Scan();m=Scan(); int ans=0; for(int i=1;i*i<=n;i++) { if(n%i==0) { if(i>=m) ans+=solve(n/i); if(n/i>=m&&i*i!=n) ans+=solve(i); } } cout<<ans<<endl; } }