POJ 2533 Longest Ordered Subsequence(LIS)

xiaoxiao2021-02-27  194

题目链接:http://poj.org/problem?id=2533点击打开链接

Longest Ordered Subsequence Time Limit: 2000MS Memory Limit: 65536KTotal Submissions: 55073 Accepted: 24687

Description

A numeric sequence of  ai is ordered if  a1 <  a2 < ... <  aN. Let the subsequence of the given numeric sequence ( a1,  a2, ...,  aN) be any sequence ( ai1,  ai2, ...,  aiK), where 1 <=  i1 <  i2 < ... <  iK <=  N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8). Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000 

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence. 

Sample Input

7 1 7 3 5 9 4 8

Sample Output

4 #include<string> #include<iostream> #include<algorithm> #include<cstring> #include <vector> #define maxn 1010 using namespace std; vector<int > dp; vector<int > a; int main() { int n; while(cin >> n) { a.clear(); dp.clear(); for(int i=0;i<n;i++) { int mid; cin>>mid; a.push_back(mid); if(lower_bound(dp.begin(),dp.end(),mid)!=dp.end()) (*lower_bound(dp.begin(),dp.end(),mid)=mid); else dp.push_back(mid); } cout << dp.size() << endl; } }

转载请注明原文地址: https://www.6miu.com/read-16662.html

最新回复(0)