经典排序算法 - 桶排序Bucket sort
补充说明三点
1,桶排序是稳定的
2,桶排序是常见排序里最快的一种,比快排还要快…大多数情况下
3,桶排序非常快,但是同时也非常耗空间,基本上是最耗空间的一种排序算法
我自己的理解哈,可能与网上说的有一些出入,大体都是同样的原理
无序数组有个要求,就是成员隶属于固定(有限的)的区间,如范围为[0-9](考试分数为1-100等)
例如待排数字[6 2 4 1 5 9]
准备10个空桶,最大数个空桶
[6 2 4 1 5 9] 待排数组
[0 0 0 0 0 0 0 0 0 0] 空桶
[0 1 2 3 4 5 6 7 8 9] 桶编号(实际不存在)
1,顺序从待排数组中取出数字,首先6被取出,然后把6入6号桶,这个过程类似这样:空桶[ 待排数组[ 0 ] ] = 待排数组[ 0 ]
[6 2 4 1 5 9] 待排数组
[0 0 0 0 0 0 6 0 0 0] 空桶
[0 1 2 3 4 5 6 7 8 9] 桶编号(实际不存在)
2,顺序从待排数组中取出下一个数字,此时2被取出,将其放入2号桶,是几就放几号桶
[6 2 4 1 5 9] 待排数组
[0 0 2 0 0 0 6 0 0 0] 空桶
[0 1 2 3 4 5 6 7 8 9] 桶编号(实际不存在)
3,4,5,6省略,过程一样,全部入桶后变成下边这样
[6 2 4 1 5 9] 待排数组
[0 1 2 0 4 5 6 0 0 9] 空桶
[0 1 2 3 4 5 6 7 8 9] 桶编号(实际不存在)
0表示空桶,跳过,顺序取出即可:1 2 4 5 6 9
以下代码仅供参考
/// <summary> /// 桶排序 /// 1),已知其区间,例如[1..10],学生的分数[0...100]等 /// 2),如果有重复的数字,则需要 List<int>数组,这里举的例子没有重复的数字 /// </summary> /// <param name="unsorted">待排数组</param> /// <param name="maxNumber">待排数组中的最大数,如果可以提供的话</param> /// <returns></returns> static int[] bucket_sort(int[] unsorted, int maxNumber = 99) { int[] sorted = new int[maxNumber + 1]; for (int i = 0; i < unsorted.Length; i++) { sorted[unsorted[i]] = unsorted[i]; } return sorted; } static void Main(string[] args) { int[] x = { 99, 65, 24, 47, 50, 88,33, 66, 67, 31, 18 }; var sorted = bucket_sort(x, 99); for (int i = 0; i < sorted.Length; i++) { if (sorted[i] > 0) Console.WriteLine(sorted[i]); } Console.ReadLine(); }
桶排序代价分析
桶排序利用函数的映射关系,减少了几乎所有的比较工作。实际上,桶排序的f(k)值的计算,其作用就相当于快排中划分,已经把大量数据分割成了基本有序的数据块(桶)。然后只需要对桶中的少量数据做先进的比较排序即可。
对N个关键字进行桶排序的时间复杂度分为两个部分:
(1) 循环计算每个关键字的桶映射函数,这个时间复杂度是O(N)。
(2) 利用先进的比较排序算法对每个桶内的所有数据进行排序,其时间复杂度为 ∑ O(Ni*logNi) 。其中Ni 为第i个桶的数据量。
很显然,第(2)部分是桶排序性能好坏的决定因素。尽量减少桶内数据的数量是提高效率的唯一办法(因为基于比较排序的最好平均时间复杂度只能达到O(N*logN)了)。因此,我们需要尽量做到下面两点:
(1) 映射函数f(k)能够将N个数据平均的分配到M个桶中,这样每个桶就有[N/M]个数据量。
(2) 尽量的增大桶的数量。极限情况下每个桶只能得到一个数据,这样就完全避开了桶内数据的“比较”排序操作。当然,做到这一点很不容易,数据量巨大的情况下,f(k)函数会使得桶集合的数量巨大,空间浪费严重。这就是一个时间代价和空间代价的权衡问题了。
对于N个待排数据,M个桶,平均每个桶[N/M]个数据的桶排序平均时间复杂度为:
O(N)+O(M*(N/M)*log(N/M))=O(N+N*(logN-logM))=O(N+N*logN-N*logM)
当N=M时,即极限情况下每个桶只有一个数据时。桶排序的最好效率能够达到O(N)。
总结: 桶排序的平均时间复杂度为线性的O(N+C),其中C=N*(logN-logM)。如果相对于同样的N,桶数量M越大,其效率越高,最好的时间复杂度达到O(N)。 当然桶排序的空间复杂度 为O(N+M),如果输入数据非常庞大,而桶的数量也非常多,则空间代价无疑是昂贵的。此外,桶排序是稳定的。
其实我个人还有一个感受:在查找算法中,基于比较的查找算法最好的时间复杂度也是O(logN)。比如折半查找、平衡二叉树、红黑树等。但是Hash表却有O(C)线性级别的查找效率(不冲突情况下查找效率达到O(1))。大家好好体会一下:Hash表的思想和桶排序是不是有一曲同工之妙呢?
这是基于单链表的快速排序算法
#include<iostream.h> #include<malloc.h> typedef struct node{ int key; struct node * next; }KeyNode; void inc_sort(int keys[],int size,int bucket_size){ KeyNode **bucket_table=(KeyNode **)malloc(bucket_size*sizeof(KeyNode *)); for(int i=0;i<bucket_size;i++){ bucket_table[i]=(KeyNode *)malloc(sizeof(KeyNode)); bucket_table[i]->key=0; //记录当前桶中的数据量 bucket_table[i]->next=NULL; } for(int j=0;j<size;j++){ KeyNode *node=(KeyNode *)malloc(sizeof(KeyNode)); node->key=keys[j]; node->next=NULL; //映射函数计算桶号 int index=keys[j]/10; //初始化P成为桶中数据链表的头指针 KeyNode *p=bucket_table[index]; //该桶中还没有数据 if(p->key==0){ bucket_table[index]->next=node; (bucket_table[index]->key)++; }else{ //链表结构的插入排序 while(p->next!=NULL&&p->next->key<=node->key) p=p->next; node->next=p->next; p->next=node; (bucket_table[index]->key)++; } } //打印结果 for(int b=0;b<bucket_size;b++) for(KeyNode *k=bucket_table[b]->next; k!=NULL; k=k->next) cout<<k->key<<" "; cout<<endl; } void main(){ int raw[]={49,38,65,97,76,13,27,49}; int size=sizeof(raw)/sizeof(int); inc_sort(raw,size,10); }