oCPC解读

xiaoxiao2021-02-28  3

欢迎转载,请注明出处:https://blog.csdn.net/tayhh/article/details/80800490

了解下背景知识,便于理解

$$eCPM$$

千次展现广告的期望收益

$$b_a$$

某个广告a的点击竞标价

$$v_a$$

某个广告a的成单收益

$$pctr_a$$

某个广告a的预估点击率(点击/曝光)

$$pcvr_a$$

某个广告a的预估转化率(转化/点击)

$$A$$

候选广告

eCPM排序机制:对单次页面请求PV , 计算每个候选广告对应的eCPM, 按值倒序排列,取前N个进行广告展示。

细看下oCPC设计要点

①    优化广告主的需求(调整竞价,使之与流量质量吻合)

②    最大化综合得分(综合用户体验、广告主利益、平台收益)。

③    保持eCPM 的排序机制不变(由此看出oCPC没有对之前的架构做大改,文中给出的架构图亦可验证,oCPC只是被封装在了策略层)。

 

 

文中设定广告主需求指标 : ROI、高质量流量,平台生态指标:GMV,平台收入指标:eCPM。整体设计思路:保证单个广告活动的ROI不降低,调整价格,优化广告主流量质量、GMV、eCPM。

下面具体讨论下oCPC的核心算法

预估概率校准(Calibration)

由模型预估的概率与真实值存在偏差,会影响到算法的效果,所以需要在执行oCPC策略前先对预估概率做校准。以CVR为例,校准操作如下:

 

这里给下ctr校准的链接,可自行补充知识:https://blog.csdn.net/lming_08/article/details/40214921

计算出价边界值 (Bounding)

边界值,实际就是广告主可以接受的出价范围。文章是在单前流量ROI不下降的前提下,推导出的边界值,整理后的推导过程如下:

ROI约束

$$p(c|u,a)$$

用户u点击广告a的前提下,转化的概率

单个广告a的ROI:

$$ROI(a)=\frac{Return(a)}{Investment(a)}=\frac{\sum_{u} {n_u*p(c|u,a)*v_a}}{\sum_{u}{n_u*b_a}}=\frac{v_a}{b_a}*\frac{\sum_u{n_u*p(c|u,a)}}{\sum_u{n_u}}=\frac{v_a*E[p(c|u,a)]}{b_a}$$

当前流量(广告a, 用户u)的ROI:

$$ROI(u,a)=\frac{p(c|u,a)*v_a}{b_a^*}$$

 

要使得当前流量ROI 不下降,即:

$$\frac{ROI(u,a)}{ROI(a)}=\frac{b_a}{b_a^*}*\frac{p(c|u,a)}{E[p(c|u,a)]}>=1$$

 

则,

$$\frac{b_a^*}{b_a}<=\frac{p(c|u,a)}{E[p(c|u,a)]}$$

 

即,调价幅度小于当前流量转化率和历史平均流量转化率的比值,就能从理论上保证ROI不会下降。

实际上,只要是调低都只会使得最终获取到的流量的平均roi不低于不开启oCPC(要么使得低cvr的流量占比变少了,要么使成本降低了)。所以ROI限制只对提价部分做限制。

 

调价范围

为保证调价安全性、满足商业需求,文中引入了调价范围参数,可以得到最终的调价空间范围:

 

即:

 

排序 (Ranking)

确定了竞价可调整的范围后,下一步就是要确定竞价的数值。相同范围内,选择不同的竞价,最后的结果也会不一样。文章将排序指标与广告流量的目标进行了解耦,用一种贪心策略,在调价范围内,寻找最优的竞价。

 

名词解释

$$s_a^*$$

排序得分

$$l(s_a^*)=pctr_a*l(b_a^*)$$

排序得分下界

$$u(s_a^*)=pctr_a*u(b_a^*)$$

排序得分上界

$$f_1(a,b_a^*)=pctr_a*pcvr_a*v_a$$

激励GMV的函数

$$f_2(a,b_a^*)=pctr_a*pcvr_a*v_a + \alpha*pctr_a*bid_a^*$$ 

GMV与广告营收的折中函数

举个例子:

最后对比下广告系统中常见的策略

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

转载请注明原文地址: https://www.6miu.com/read-1600091.html

最新回复(0)