【DP】BZOJ4300[绝世好题]题解

xiaoxiao2021-02-27  164

题目概述

ps:题目名真自恋。 给定一个序列a,求一个最长的子序列b,子序列相邻两个元素b[i-1]和b[i]满足(b[i-1]&b[i])!=0。

解题报告

刚开始一看到就想到朴素DP,f[i]表示i必选的最优解,但是 O(n2) 扛不住。我们分析一下f[j]能推到f[i]的要求:(a[j]&a[i])!=0,这个要求进一步理解就是a[j]和a[i]二进制至少有一位均为1。所以我们可以从二进制下手!f[i]表示二进制第i位为1的最优解,则对于a[i]来说,如果a[i]第j位为1,那么当前状态就可以从f[j]推过来,刷出max(f[j]),再把a[i]所有为1的位置都修正就行了。效率 O(30n)

示例程序

#include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int maxn=100000,maxt=30; int n,a[maxn+5],f[maxt+5]; int main() { freopen("program.in","r",stdin); freopen("program.out","w",stdout); scanf("%d",&n); for (int i=1;i<=n;i++) scanf("%d",&a[i]); for (int i=1;i<=n;i++) { int MAX=0; for (int j=0;j<=30;j++) if (a[i]&(1<<j)) MAX=max(MAX,f[j]); for (int j=0;j<=30;j++) if (a[i]&(1<<j)) f[j]=max(f[j],MAX+1); } int MAX=0; for (int j=0;j<=30;j++) MAX=max(MAX,f[j]); printf("%d\n",MAX); return 0; }
转载请注明原文地址: https://www.6miu.com/read-15417.html

最新回复(0)