Modular Inverse
Time Limit: 2 Seconds Memory Limit: 65536 KB
The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m). This is equivalent to ax≡1 (mod m).
Input
There are multiple test cases. The first line of input is an integer T ≈ 2000 indicating the number of test cases.
Each test case contains two integers 0 < a ≤ 1000 and 0 < m ≤ 1000.
Output
For each test case, output the smallest positive x. If such x doesn't exist, output "Not Exist".
Sample Input
3 3 11 4 12 5 13Sample Output
4 Not Exist 8References
http://en.wikipedia.org/wiki/Modular_inverseAuthor: WU, Zejun Contest: The 9th Zhejiang Provincial Collegiate Programming Contest
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3609
思路:如果a*x + m * y = 1 即gcd(a,m)= 1 则说明x是a的逆元,否则不是。
又因x可能是负数,所以要提前判断下。
代码如下:
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; int t; int exgcd(int a, int b, int &x, int &y){ if(b == 0){ x = 1; y = 0; return a; } int r = exgcd(b,a%b,y,x); y -= a/b * x; return r; } int main(){ scanf("%d",&t); while(t --){ int a,m; scanf("%d%d",&a,&m); int x,y; int d = exgcd(a,m,x,y); if(d != 1) printf("Not Exist\n"); else{ while(x <= 0) x += m; printf("%d\n",x); } } return 0; }