摘要:本文主要讲了Kafka的一个简单入门实例
源码下载:https://github.com/appleappleapple/BigDataLearning
kafka安装过程看这里:Kafka在Windows安装运行
整个工程目录如下:
1、pom文件
[html] view plain copy <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.lin</groupId> <artifactId>Kafka-Demo</artifactId> <version>0.0.1-SNAPSHOT</version> <dependencies> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka_2.10</artifactId> <version>0.9.0.0</version> </dependency> <dependency> <groupId>org.opentsdb</groupId> <artifactId>java-client</artifactId> <version>2.1.0-SNAPSHOT</version> <exclusions> <exclusion> <groupId>org.slf4j</groupId> <artifactId>slf4j-log4j12</artifactId> </exclusion> <exclusion> <groupId>log4j</groupId> <artifactId>log4j</artifactId> </exclusion> <exclusion> <groupId>org.slf4j</groupId> <artifactId>jcl-over-slf4j</artifactId> </exclusion> </exclusions> </dependency> <dependency> <groupId>com.alibaba</groupId> <artifactId>fastjson</artifactId> <version>1.2.4</version> </dependency> </dependencies> </project>2、生产者
[html] view plain copy package com.lin.demo.producer; import java.util.Properties; import kafka.javaapi.producer.Producer; import kafka.producer.KeyedMessage; import kafka.producer.ProducerConfig; public class KafkaProducer { private final Producer<String, String> producer; public final static String TOPIC = "linlin"; private KafkaProducer() { Properties props = new Properties(); // 此处配置的是kafka的端口 props.put("metadata.broker.list", "127.0.0.1:9092"); props.put("zk.connect", "127.0.0.1:2181"); // 配置value的序列化类 props.put("serializer.class", "kafka.serializer.StringEncoder"); // 配置key的序列化类 props.put("key.serializer.class", "kafka.serializer.StringEncoder"); props.put("request.required.acks", "-1"); producer = new Producer<String, String>(new ProducerConfig(props)); } void produce() { int messageNo = 1000; final int COUNT = 10000; while (messageNo < COUNT) { String key = String.valueOf(messageNo); String data = "hello kafka message " + key; producer.send(new KeyedMessage<String, String>(TOPIC, key, data)); System.out.println(data); messageNo++; } } public static void main(String[] args) { new KafkaProducer().produce(); } }右键:run as Java application
运行结果:
3、消费者
[java] view plain copy package com.lin.demo.consumer; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Properties; import kafka.consumer.ConsumerConfig; import kafka.consumer.ConsumerIterator; import kafka.consumer.KafkaStream; import kafka.javaapi.consumer.ConsumerConnector; import kafka.serializer.StringDecoder; import kafka.utils.VerifiableProperties; import com.lin.demo.producer.KafkaProducer; public class KafkaConsumer { private final ConsumerConnector consumer; private KafkaConsumer() { Properties props = new Properties(); // zookeeper 配置 props.put("zookeeper.connect", "127.0.0.1:2181"); // group 代表一个消费组 props.put("group.id", "lingroup"); // zk连接超时 props.put("zookeeper.session.timeout.ms", "4000"); props.put("zookeeper.sync.time.ms", "200"); props.put("rebalance.max.retries", "5"); props.put("rebalance.backoff.ms", "1200"); props.put("auto.commit.interval.ms", "1000"); props.put("auto.offset.reset", "smallest"); // 序列化类 props.put("serializer.class", "kafka.serializer.StringEncoder"); ConsumerConfig config = new ConsumerConfig(props); consumer = kafka.consumer.Consumer.createJavaConsumerConnector(config); } void consume() { Map<String, Integer> topicCountMap = new HashMap<String, Integer>(); topicCountMap.put(KafkaProducer.TOPIC, new Integer(1)); StringDecoder keyDecoder = new StringDecoder(new VerifiableProperties()); StringDecoder valueDecoder = new StringDecoder(new VerifiableProperties()); Map<String, List<KafkaStream<String, String>>> consumerMap = consumer.createMessageStreams(topicCountMap, keyDecoder, valueDecoder); KafkaStream<String, String> stream = consumerMap.get(KafkaProducer.TOPIC).get(0); ConsumerIterator<String, String> it = stream.iterator(); while (it.hasNext()) System.out.println("<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<" + it.next().message() + "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<"); } public static void main(String[] args) { new KafkaConsumer().consume(); } }运行结果:
监控页面
源码下载:https://github.com/appleappleapple/BigDataLearning