1.题目描述:
2.题意概述:
要你寻找一个连续子序列,使得他们的和最大,且序列长度不超过K
3.解题思路:
因为序列是环状的,所以可以在序列后面复制前k-1个数字。如果用s[i]来表示复制过后的序列的前i个数的和,那么任意一个子序列[i..j]的和就等于s[j]-s[i-1]。 对于每一个j,用s[j]减去最小的一个s[i](i>=j-k)就可以得到以j为终点长度不大于k的和最大的序列了。将原问题转化为这样一个问题后,就可以用单调队列解决了。 单调队列即保持队列中的元素单调递增(或递减)的这样一个队列,可以从两头删除,只能从队尾插入。单调队列的具体作用在于,由于保持队列中的元素满足单调性, 对于上述问题中的每个j,可以用O(1)的时间找到对应的s[i]。(保持队列中的元素单调递增的话,队首元素便是所要的元素了)。 维护方法:对于每个j,我们插入s[j-1]的下标,插入时从队尾插入。为了保证队列的单调性,我们从队尾开始删除元素,直到队尾元素对应的值比当前需要插入的s[j-1]小, 就将当前元素下标插入到队尾。之所以可以将之前的队列尾部元素全部删除,是因为它们已经不可能成为最优的元素了,因为当前要插入的元素位置比它们靠前, 对应的值比它们小。我们要找的,是满足(i>=j-k)的i中最小的s[i]。在插入元素后,从队首开始,将不符合限制条件(i<j-k)的元素全部删除,此时队列一定不为空。(因为刚刚插入了一个一定符合条件的元素)。 4.AC代码: #include <cstdio> #include <iostream> #include <cstring> #include <string> #include <algorithm> #include <functional> #include <cmath> #include <vector> #include <queue> #include <deque> #include <stack> #include <map> #include <set> #include <ctime> #define INF 0x3f3f3f3f #define maxn 200100 #define lson root << 1 #define rson root << 1 | 1 #define lent (t[root].r - t[root].l + 1) #define lenl (t[lson].r - t[lson].l + 1) #define lenr (t[rson].r - t[rson].l + 1) #define N 1111 #define eps 1e-6 #define pi acos(-1.0) #define e exp(1.0) using namespace std; const int mod = 1e9 + 7; typedef long long ll; int q[maxn], a[maxn], sum[maxn]; int main() { #ifndef ONLINE_JUDGE freopen("in.txt", "r", stdin); freopen("out.txt", "w", stdout); long _begin_time = clock(); #endif int t, n, k; scanf("%d", &t); while (t--) { scanf("%d%d", &n, &k); sum[0] = 0; for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); sum[i] = sum[i - 1] + a[i]; } for (int i = n + 1; i <= n * 2; i++) sum[i] = sum[i - 1] + a[i - n]; int ans = -INF, l = -1, r = -1, head = 0, tail = 0; q[0] = 0; for (int i = 1; i <= n + k; i++) { while (head <= tail && sum[q[tail]] > sum[i - 1]) tail--; q[++tail] = i - 1; while (i - q[head] > k) head++; int tmp = sum[i] - sum[q[head]]; if (ans < tmp) { ans = tmp; l = q[head] + 1; r = i; } } printf("%d %d %d\n", ans, l > n ? l - n : l, r > n ? r - n : r); } #ifndef ONLINE_JUDGE long _end_time = clock(); printf("time = %ld ms.", _end_time - _begin_time); #endif return 0; }