【dp】例题9-3 UVa 1347

xiaoxiao2021-02-28  78

/* 基础dp UVa 1347 Tour 时间: 2017/05/06 题意:给定平面上n个点的坐标,要求找出最短路线从最左边的点走到最右边的点再回来,并满足除了最左最右两点,其他点都有且只经过一次。 题解:问题转化为两个人从最左边的点到最右边的点路线长总和最短,并满足两个人的路线互相不能经过同一个点,但总的经过所有点。 dp[i][j] 代表前i个点都走过,其中一个人走得远点的人走到第i个点,另一个人走到第j个点的最短路线。(即i > j) dp[i+1][i] = dp[i][j]+dist(j,i+1); dp[i+1][j] = dp[i][j]+dist(i,i+1); */ #include<iostream> #include<cstdio> #include<cstring> #include<stack> #include<map> #include<queue> #include<cmath> #include<algorithm> #include<deque> typedef long long LL; using namespace std; #pragma comment(linker, "/STACK:102400000,102400000") const int INF=0x3f3f3f3f; const int N = 1000+10; const double esp = 1e-6; struct Point { double x,y; }a[N]; bool cmp(Point f1,Point f2) { return f1.x < f2.x; } double dist(Point f1,Point f2) { return sqrt((f1.x-f2.x)*(f1.x-f2.x)+(f1.y-f2.y)*(f1.y-f2.y)); } double dp[N][N]; int main() { int n; while(~scanf("%d",&n)) { for(int i = 1; i <= n; i++) for(int j = 1; j <= n; j++) dp[i][j] = 1000000000; for(int i = 1; i <= n; i++) scanf("%lf%lf",&a[i].x,&a[i].y); sort(a+1,a+n+1,cmp); dp[1][1] = 0; for(int i = 2; i <= n; i++) { dp[i][i-1] = dp[i-1][1]+dist(a[i],a[1]); for(int j = 1; j < i; j++) { dp[i][i-1] = min(dp[i][i-1],dp[i-1][j]+dist(a[i],a[j])); if(j != i-1) dp[i][j] = dp[i-1][j]+dist(a[i],a[i-1]); } } double ans = 1000000000; for(int i = 1; i < n; i++) ans = min(ans,dp[n][i]+dist(a[i],a[n])); printf("%.2lf\n",ans); } return 0; }
转载请注明原文地址: https://www.6miu.com/read-61795.html

最新回复(0)