TensorFlow数据归一化

xiaoxiao2025-07-19  4

TensorFlow数据归一化 1. tf.nn.l2_normalize     - l2_normalize(x, dim, epsilon=1e-12,name=None)     - output = x / sqrt(max(sum(x**2), epsilon)) 2.使用scikit-learn进行归一化(**numpyarray**)     ```     min_max_scaler = preprocessing.MinMaxScaler()     standar_scaler = preprocessing.StandardScaler()     feature_1_scaled = standar_scaler.fit_transform(feature_1)     feature_3_scaled = min_max_scaler.fit_transform(feature_1)     ``` 3. tensor与numpyarray相互转换     - tf.convert_to_tensor(img.eval())     - print(type(tf.Session().run(tf.constant([1,2,3])))) --*<class 'numpy.ndarray'>* 1 2 3 4 5 6 7 8 9 10 11 12 13 People typically use scikit-learn (StandardScaler) for standardizing data before they train their models on TensorFlow.

def normalize(train, test):     mean, std = train.mean(), test.std()     train = (train - mean) / std     test = (test - mean) / std     return train, test ---------------------  作者:zoray  来源:  原文:https://blog.csdn.net/zoray/article/details/74276570  版权声明:本文为博主原创文章,转载请附上博文链接!

转载请注明原文地址: https://www.6miu.com/read-5033347.html

最新回复(0)