本脚本支持仅1920*1080 像素分辨率的机子上面正常运行。
-------------------------------------------------------------------------------
我是真的懒,连能量都不想好好收,因此写了脚本来自动帮我收能量.
Auto.js 这款脚本应用我们在应用市场可以很方便搜索到,它在没有root的时候可以通过开启无障碍服务来实现模拟点击滑动,监听等等.使用下面这个脚本,可以实现打开支付宝,进入蚂蚁森林(你得将它添加到主页常用子应用中),滑动,查找有能量的好友,进入收集。
好好享用,那么上代码:
/** * * @name 支付宝自动收能量脚本 * @author Oliver * @description 需要您的设备分辨率为1920*1080;小米8上,截图需要手动允许,需要点击 “立即开始”; 开始运行时请保证支付宝已经处于首页 */ auto(); main(); /** * 下面注释代码可以进一步完善,读取到可以收取的时间,做个记录,然后到时间自动进去收集 * events.observeNotification(); events.onToast(function (toast) { var text = toast.getText(); var appName = toast.getPackageName(); var subIdx = text.indexOf("后"); if (appName == "com.eg.android.AlipayGphone" && subIdx != -1) { var sub = text.substring(0, subIdx); var idxHour = sub.indexOf("小时"); var idxMin = sub.indexOf("分"); var hour = 0; var min = 0; if (idxHour == -1) { var stringMin = sub.substring(0, idxMin); min = parseInt(stringMin) } else { var stringHour = sub.substring(0, idxHour); var stringMin = sub.substring(idxHour + 2, idxMin); hour = parseInt(stringHour) min = parseInt(stringMin) } var time = (hour * 60 + min) * 60 * 1000; if (nextTime > time) { nextTime = time; } log("NextTime=" + hour + ":" + min + " Microseconds=" + nextTime + "ms"); } }); //setTimeout(function() { //}, 1000*1); // main(); var nextTime = 900000000000; */ var end = false; function main() { toast("程序开始运行!"); launchApp("支付宝"); sleep(3000); click("蚂蚁森林"); //为了这后面正常运行,将蚂蚁森林放在支付宝首页中 sleep(3000); collect(); swipe(540, 1910, 540, 100, 500) swipe(540, 1910, 540, 100, 500) swipe(540, 1910, 540, 100, 500) click(672, 954); //查看排行榜 sleep(2000); swipe(540, 1800, 540, 1800 - 240, 500); sleep(500); toast("现在开始收集能量了!"); while (!end) { execute(); } } function execute() { swipe(540, 1919, 540, 88, 500) col(); swipe(540, 1734, 540, 1734 - 156, 500) click(540, 1918); sleep(2000); swipe(540, 1857, 540, 155, 500); sleep(1000); col(); } function col() { if (!requestScreenCapture()) { toast("没有截图权限,程序退出!"); exit(); end = true; } var img = captureScreen(); for (var i = 187; i <= 1816; i = i + 200) { if (isEnd(img, i)) { back(); sleep(1000); back(); sleep(1000); back(); sleep(1000); toast("完成任务啦!") end = true } var p = getColor(img, i); if (p) { click(1017, p.y + 20); sleep(3000); collect(); back(); sleep(1000); } else { log(i + " p=null"); } } } function getColor(img, y) { var p = findColor(img, "#30bf6c", { region: [1017, y, 63, 100] }); return p; } function isEnd(img, y) { var p = findColor(img, "#30bf6c", { region: [860, y, 10, 10] }); return p != undefined; } function collect() { for (var y = 460; y <= 860; y += 100) { for (var x = 185; x <= 890; x += 100) { click(x, y); } } }
Python中的实现,我们使用android的自动化测试库uiautomator来实现,使用opencv来实现对截图的中可搜集小手的识别,目前还不是很完善,提供一个思路,希望有时间的你来实现,其实Auto.js那个真的好用;-)
#! -*- coding=utf-8 -*- from uiautomator import Device from uiautomator import Adb import os import cv2 import numpy as np from matplotlib import pyplot as plt def match(): img = cv2.imread("1.png",0) img2 = img.copy() template = cv2.imread("match.png",0) w,h = template.shape[::-1] # method = eval('cv2.TM_CCOEFF') method = eval('cv2.TM_CCOEFF_NORMED') res = cv2.matchTemplate(img2,template,method) threshold = 0.5 loc = np.where( res >= threshold) arr = [] for pt in zip(*loc[::-1]): cv2.rectangle(img, pt, (pt[0] + w, pt[1] + h), (0,0,255), 2) d = (pt,(pt[0] + w, pt[1] + h),) arr.append(d) cv2.imwrite('res.png',img) return arr if __name__ == "__main__": d = Device("7cba0eb") # d.screen.on() # a = Adb() # os.system("adb shell am start -n com.eg.android.AlipayGphone/.AlipayLogin") # # a.cmd("shell am start -n com.eg.android.AlipayGphone/.AlipayLogin") # d(text="蚂蚁森林").click() # # d(text="种树").click( # print d.info # d.wait.idle() # d.wait.update() # d.screenshot("1.png") # d(scrollable=True).fling() # web = d(className="com.uc.webview.export.WebView") # web = d(className="com.uc.webkit.WebView") # web.scroll.toEnd() # web.swipe.down() # web.click(800,940) # d.wait.update() # web = d(className="com.uc.webview.export.WebView") d.screenshot("1.png") loc= match() print loc # print (tl[0]+br[0])/2,(tl[1]+br[1])/2 # d.click((tl[0]+br[0])/2,(tl[1]+br[1])/2) # d.wait.update() # for y in range(400,870,100): # for x in range(50,1080,100): # d.click(x,y)
